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0. Introduction

For a nonnegative integer s and a finite simplicial complex K,

let s(K) denote the s-dimensional Betti number of K and let f (K)

denote the number of s-simplices of K. Our theorem, like Poincare s,

applies to combinatorial manifolds M, but it concerns the numbers f s(M)

instead of the numbers ps(M). One of the formulae given below is used

by the author in [5] to establish a sharp upper bound for the number of

vertices of n-dimensional convex polytopes which have a given number

i of (n - 1) faces. This amounts to estimating the 6ize of the

computation problem which may be involved in solving a system of i

linear inequalities in n variables, and was the original motivation

for our study.

A combinatorial n-manifold is a finite simplicial n-complex Mn

such that for each s-simplex os e Mn, the linked complex L(dS,Mn)

has the same homology groups as an (n - s - l)-sphere; analogously, an

Eulerian n-manifold is defined here by the condition that L(dS,Mn)

always has the same Euler characteristic 1 - (- 1)n-s as an (n - s - l)-

sphere, where of course the Euler characteristic of a finite complex K
0 c00

is the alternating sum x(K) = Z (- l)Sfs(K)(= Z(- 1)5 sp(K)). Let
s=O s=O

En (resp. Cn) denote the class of all Eulerian (resp. orientable combina-

torial) n-manifold, and for each M 6 n let

P(M) =: (Po(M),'P(M),...,Pn(M)) and f(M) = (f 0 (M),fl(M),...,fn(M)).

Then define

•n(n) (f3(M) :MeCn} C Rn+l and f(En) = [f(M):MEn] CRn+l
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Poincare's theorem ( s(M) = 3ns (M)) implies that the linear

span of the set P(0f) is an K(n + 2)/2>--dimensiona]. subspace of

R n+l (where (k) denotes the greatest integer < k), and the theorem

exhibits a convenient basis for that subspace. The same results are

obtained here for the linear span of f(En), which has a convenient

basis involving binomial coefficients in a simple way. For example,

6 7 E7 C 0
bases for the linear spans of f(E ) C R and f(E)CR are as

follows:

E 6: (2,0,0,0,0,0,0),(1,3,2,0,0,0,0),(0,1,4,5,2,0,0),(0,0,1,5,9,7,2);

E7 : (il,0,0,O,0,0,0),(0,i,2,1,0,0,0,),(0,0,i,3,3,1,0,0),(0,O,0,i,4,6,4,1).

(Note that (1,3,2) = (1,2,1) + (0,l,),(l,4,5,2) = (1,3,3,1) + (0,1,2,1),

etc.)

Having a convenient basis for the linear span of, f(En) leads to

a useful characterization of the linear relations which must subsist

among the numbers fs(M) for all MeEn. It turns out that when

n = 2u - 1 (whence X(M) =0 for all MeEn) the numbers fn(M),

fn l(M),...,f u(M) can be expressed linearly in terms of f ul(M),...,

fl(M)',fo(M) (the expressions being valid for all MeEn), while when

n = 2u - 2 the numbers fn(M),fnil(M),'",fu1 l(M) admit linear expres-

sions in terms of fu_ 2 ( M)),...,foM),x(M).

Our approach is of a purely combinatorial nature, involving neither

subdivision nor homology. The arithmetical identities of §1 are used in

§2 to prove the main result, a theorem concerning abstract incidende

systems which exhibit some properties of those which are dual to

Eulerian manifolds. Applications to Eulerian manifolds and convex

polytopes appear in §3.
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For the elementary properties of complexes and convex polytopes

which are employed here, the reader may consult Alexandroff and Hopf [1]

and Weyl [6]. For a treatment of the Euler characteristic which is

well suited to the present elementary combinatorial approach, see

Hadwiger [31 or Klee [4].

Helpful comments were supplied by C. B.. Allendoerfer, E. H. Spanier,

and H. S. Zuckerman.



1. Some arithmetical identities

This section contains some arithmetical identities involving

binomial coefficients, to be employed in §2. Though these may appear

in the literature, we have not found them there and thus include their

proofs as an aid to the reader. We agree that (nr) is defined in theproofs

usual way for all integers n and r -- positive, zero or negative

(cf. Feller [2, p.40]), and will use freely the basic recursion

(n) = (n - 1) + (n - )
r r r- 1

1.1 PROPOSITION For all nonnegative integers j and k,

Sj) j ( l J

Proof. Let V(i,j,k).= (- l)( j) , whence

V~i~~k)I [Jl j- 1 (i+j-l) + i+J-l1

V(i,j,k) = (- l)i[(JI) + (i-l)][ + k-l)]

i-i j- i~j-2 i+j-2) (i+j-2) (i+J-2)]=
V(i,j-l,k) + V(i,j-l,k-l) - (- I)'(i-) [(i+j-2) + (k-i + k-i + k+ -2

V(i,j-l,k) + V(i,j-l,k-l) - V(i-l,j-l,k) - 2V(i-l,j-l,k-l) - V(i-l,j-l,k-2).

J

Now let U(j,k).= 7 V(i,j,k). Corresponding to the five terms
i=O

V(',j- 1,.) in the above expression for V(i,j,k), we obtain the

five bracketed terms in the equation

U(j,k) = [U(j-l,k) + V(j,j-l,k)] + [U(j-l,k-l) + V(j,j-l,k-l)]

- [V(-l,j-l,k) + U(j-l,k)] - 2[V(-l,j-l,k-1) + U(J-l,k-l)] - [V(-l,j-l,k-2) +

+ U(j-l,k-2)] = - U(j-l,k-l) - U(j-l,k-2).



5

Now clearly when m = 0, U(m,k) (- 1)m(k m m) for all integers

k (positive, negative, or zero). Suppose the same is known for m = j - 1

and consider the case of U(j,k). We have

U(j~k) - U(j-l,k-1) - U(j-l,k-2)

_lJ-1E(kj-1 + (k~j ll?= (- J(kj),
1j k-j k-j-1

so the proof of 1.1 is completed by mathematical induction.

1.2 PROPOSITION For 0 < j < k,
2k-j i( i-i

) (k-1) i.

i22k-2j

Proof. Let h(k,i) . 2k-i- and note that'=k (k-l annoett

(1) h(k - l,i) = h(k,i + 1) - h(k,i).

Indeed, (i) asserts that

2k-i-2 i-l 2ki i-1 i-1 i-i 2k-i'i-l.
k-1 L'k-2) k [k(l) + (k-2) ]1 - k k-l)

reducing at once to

i-k+l il1 i-i
k-I •k-2) = (k-1)

which is easily verified.

2k-j
Now let T(k,j).= (- 1) ( 2kj-i )h(ki). We want to show that

i=2k-2j
T(k,j) = 0 whenever 0 < j < k. Since effective summation in the

expression for T(k,j) is over the range max(2k-2j,k) < i < 2k-j,

it is easily verified that T(k,k-l) = 0 for k > 2, and in particular

T(2,m) = 0 whenever 0 < m < 2. Now suppose it is known that T(k-l,m) = 0
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whenever 0 < m < k - 1 and that T(k,m) = 0 whenever j < m < k

(where j < k - 1). We can show that T(k,j) =0 and by proving that

(2) T(k,j) + T(k,j+l) + T(k-l,j) + T(k-l,j-1) 0 O.

To verify (2) we note that

2k-j
T(k,j) = Z ( l)i( 2 k _ji)h(ki)

2k-2j

and
2k-j-I l h~~)

T(k,j+l) + Z ( l)i( jil+ )hki

2k-2j-2

with summation always on i, and from (1) it follows that

2k-j -3 1)i'h(ki' 2k-j-2=~-lj Z 1)(- l 2 i i1 )h(k'i) - Z (- 1i)2- 12)~~)

2k-2j-3 -k-i- 2k-2j-2

2k-j i-l 2ki ) 2j-I1J
T(k-l,j-l) = -j I)i - )h(k,i) - 2k (-i

2k-2j+l 2k-2J

Then (2) is proved by showing that for each i, the net coefficient of

h(k,i) on the left side of (2) is equal to zero. For example, when

2k-2j + 1 < i < 2k - j - 3, this coefficient is equal to (- 1) times

the number

( ,j+l ) j+l 2J-1~l
(2kj -i) + (2k--- 1  - (2k-j-i-) - (2k- -i-21 -2k-j--ii2 22- j-i-

which is equal to zero by the basic recursion used in justifying (1).

The other cases are even simpler.
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2. A theorem on certain incidence systems

.By the term incidence system we shall mean a finite set X with

an associated incidence function cp and dimension function 6; ( is

a symmetric real-valued function on X x X (that is, T(x,y) = rp(y,x)

for all x,y E X) and 6 is a function on X to a set of integers. For each

element y of X and each integer i, we define

1i(y) .= 7 P(y,x).
xeX, W(x)=i

In the case of special interest, cp assumes only the values 0 and 1

and is thus the characteristic function of an incidence relation (a

symmetric subset of X x X); in this case, [i(y) is merely the number

of i-dimensional elements of X which are incident to y.

The characteristic X(y) of an element yeX is defined as the

alternating sum

6(y)
X(Y) .= E (- l)i .ij(Y).

i=0

For d ý 1, the system (X,cp,b) will be called a d-system provided

it satisfies the following conditions:

(i) max[b(x): xcX3 = d - 1;

(ii) X(y) = 1 for all ycX with b(y) > 0;

(iii) whenever yeX and 0 < 6(y) < i < d - 1, then i(y) (d-6(y))
i-b(y)

Note that these conditions are all satisfied when X is the simplest triangu-

lation of a (d - l)-sphere (that is, the system of all proper faces of a

d-simplex), cp(x,y) = 1 when x and y are incident (x C y or x D y)
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and 0 otherwise, and b is the usual dimension function.

2.1 THEOREM Suppose the incidence system (X,cpb) is a d-system,

with d 2u - 1 or d = 2u. For 0 < s < d - l, let f denote the
1 d-1

number of s-dimensional elements of X, and let fd. L z (- 1)Sfs. For

1 < j u, let d denote the 2u-vector ( dj O '' ''7( u -)) where

(2u-s) (2u. -s when d 2u-1
dYjs =!

(2uT -sh when d 2u.

Then the vector f (f0 ,..,f2u-l) is linearly dependent on the u

d d
vectors 1'" "¥u' Further, fd = 0 when d 2u.

Proof. For i and j between 0 and d - 1, let

g ij'= E cP(x,y).x,yEX; •(x) =i, •(y) =j

Then of course gij jg... It follows from condition (iii) that

1y (y) 1ý for all ysX, and then from condition (ii) that
(y)(-l = 1 - (- b)b(y)

i=O

Using this equation in conjunction with (iii) we see that for

1 <_m __d -<,

(1 1- ~ 1(- g=M1
(i ( lm~m = m gml+"' (- 1)m-lgm(m-l)

(dd mld-m+lf
- fo-m d-m)fl +'" (d (- 1 1 d-m m m
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Hence we obtain the following equations E for 1 < m < d - 1:

d f d-i .l (d-m+l•

(odd m) E m 0 = (ddf (d-mfl +d '+ _ d- )f lm - 2fm

(even m) Em: 0 = (ddm)f0 - (d-l)f- (d-m+l)f•M-M d-mfl+"+ d-m 'm-l'

And we have also

Ed: 0 = f0 f +.. .+(- 1 )d-lfd-I - 2fd'

These equations are redundant, and we will be concerned only with those

having odd indices, that is, with

El1 0 = (d-l)fO - 2fl,

d0= d3)f0- (d_ )f + (d-2)f 2  2f 3 ,

terminating with E 2u- or in other words with

(odd d) Ed: 0 = fo - f 1 + f2 - f3 +...+ fd-l - 2 fd

or

(even d)Edl: 0 = df 0 - (d-l)fI + (d-2)f 2 - (d-3)f 3 +'" + 2 fd_2 - 2 fd-l'

or 1 < r <_u and 0 <_ s < 2u - 1, let dr be the coefficient

of fs in the equation E2 r 1l where of course Pds = 0 for s > 2r - 1.

The u vectors pd = (r011.4 •( )e R , 1 < r < u, are linearly

independent because the u x u submatrix

(d ) (1 <_r <u, 1 <_odd s< 2u )

is triangular and has exclusively - 2's along its main diagonal. Let L

denote the u-dimensional linear subspace of R which is spanned by

dj and let L0 denote the orthogonal supplement of L, con-
2u2u- d

sisting of all. vectors y = (y0 ,...,y2u_]) E R such that F PrsYs = 0
s=0
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0for 1 < r < u. Then of course feLO, and we will show below that

Y d,...,yd] C LO. Since L0 is a u-dimensional linear space and

ince the u vectors yTd(1 < j K u) are easily seen to be linearly

independent, it will follow that f is a linear combination of the
d

y'Is. This is the first assertion of 2.1. The second assertion of

2.1, is that if d = 2u, then fd = 0 or in other words the 2u-vector

(1,- 1,...,1 - 1) is orthogonal to the 2u-vector f = (fo,...,f2u-1).

For this it suffices (in view of the first assertion) to show that

d(1, 1,* . -1) is orthogonal to each of the vectors y.(l K- j KU).
dBut recalling the definition of the vectors Yj, we note that if

d 2u and 1 < j < u, then

2u -1 2u-1 2u-j

E 0 1 s d2s j-s
( )yjs 1) Ij (--S(u s) = -1)2- z (- )i( )

s=O s=O 2.i~l-j

Ji

i 7,0 1( 0

where the final equality follows from 1.1 with k 0.

To complete the proof we must show that

2u-1 d d
[d,r,j]: .7 rs'. = 0 for 1 Kr Ku, 1 • j Ku.

s=0

Recalling the definition of drs' we see that Pr(2r-l) d - 2, while

d ()~s d-s r) fr(s2r-1)
P rs 1- )s (d_2s l for s 2r 1 .
rs d-2r+l

When d 2u- e nd 2r-1 is not between 2u.-2j and 2u.-j,
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the left side of [d,r,j] is given by

2u-l d j 2u-j d - s)Z rs2 -s(2u -s) = (2u - s)(uj
~ '2u-j -s r s (2ujs=O s=2u-2j

2u-j d-s
1 s (- -s (2u - s)(d_2r+l)s =2u-2j

u J _ )()i +)(i+j -1)( 1) =-J ( d-2r+l

* i=O

where the last equality comes from the substitution i 2u - j - s.

But (i+j), l) =_2r -2l 'd + so we can continue the computation
d-2r+l. UiJd -2r+2

with

( u-l j(d-2 r+2 ) F, 1)i(djx i+j )

i d-2r+2
i=0

(- 1) 2u-j(d-2r+2)(- l)j(d2 +2j) ,

where the next-to-last equality comes from 1.1 and the final equality

results from the fact that (d2 = 0 when 2r - 1 is not between
d-r+2-j

2u -2j and 2u - J.

Nowsuppose d=2u -1 but 2u-2j <2r-i<2u-j.

Correcting the preceding computation to account for the special value
d

of d(2r-1)' we see that the left side of [d,r,j] is equal to

j(rd2r-ld

(d-2r+2)(d 2 r+2 _) + (d - 2 -(- 1) (d-(2r-l)d-2r+-j j2r-1 d-2r+l

(d-2r+2)( d + ) - (2u - (2r-l))(2 = 0.

Suppose finally that d = 2u. When 2r - 1 is not between
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2u. - 2j and 2u - j, the left side of [d,r,j] is given by

d-j d -- _ - J ) i+j •

z (_ 1)S( s) ) (d lrd-j E (- 1)i())d_2r+l)
s=d-2j d-2r+l iOd

( )dJ( l)(d2+lj) : 0,

where we have used 2.1 and the fact that d - 2r + 1 - j is < 0 or > J.

When *d - 2j < 2r - 1 <_ d - j, correction for the special value of
ddr(2rl) leads again to the value 0, as in the preceding paragraph.

This completes the proof of 2.1. II

2.2 COROLLARY Suppose d is a positive integer with d = 2u - I

or d = 2u, and I is a set of integers which includes at least one

from each of the u pairs [0,l3,[2,3j,''',[2u - 2,2u - 1}. If two

d-systems (X,cp,b) and (XI,bt,6) are such that f. f' for all

ieI (where the numbers f. and f! are as in 2.1), then f = ff1 1-----S 5

for 0 < o < 2u - 1.

d dProof. Upon examination of the basis system Yl'",Iyu'

this is seen to follow at once from 2.1. I

The following is also an immediate consequence of 2.1.

2.3 COROLLARY With hypotheses and notation as in 2.1, let T

denote the set of all vectors E = (2u,..,2ul) s Ru such that
2u-1 2u-1 d
E ýsf = 0. Then • includes all vectors ý such that 70 sys = 0

- __s=0 s s
for 1 < j < u.

The next theorem is the one whose dual (given in 3.2 below) will

be applied in [51.
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2.4 THEOREM Suppose d is a positive integer with d = 2u - 1

or d = 2u, and t is an integer with 0 < t < u - 1. Then there is

a vector dt (cdt .dt) such that

2u1-1 dt
ft= z ii--

whenever the numbers fs are obtained from a d-system as in 2.1. In

particular,

d i-u i-l'
: = z 1) 2(ul)fi when d = 2u - 1, and

d-I -
f d 1 i-u (2 -fi when d 2u.

Proof. The first assertion of 2.4 is an easy consequence of

2.3. To justify the specific formulae for f it suffices (in view of

2.3) to show that:

2u-I i-u2i-l d d
for d = 2u - e and 1_< j < u, ( 1 ) 2 (iu-l)yji YjO;

i --u
2u-1 i- u-i i-i d d

for d = 2u and 1 < j < u, Z (- i) . - )i -YjO'
u u-ii 0

d (which depend on the parity of d), weRecalling the formulae for Yjs

see that the statements are easily verified when j = u, while for

1 < j < u they both amount to the assertion that

2u- l)i(2u-j i)(2 i) 0-i

i--u

But here the effective range of summation is only for 2u - 2j < i < 2u - j

(since otherwise (0_ ) O), and the desired conclusion follows from

2u-j i

1.2.
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3. Application to Eulerian manifolds and convex polytopos

A cell-complex is a finite family K of convex polytopes (the

cells of K) such that each face of a member of K is a member of K,

and the intersection of any two members of K is a face of both. An

n-dimensional cell-complex Kn will be called a sim•e n-manifold

provided for 0 < s < i < n, each s-cell of Kn is a face of (n+l-s)
-- -- -- • i-s

i-cells of Kn.

3.1 PROPOSITION Suppose K is a simple n-manifold and d = n + 1.

For d,T K let 0(d,r).= 1 when o C T or o D T, and 9(d,'u).= 0

otherwise. Let b be the usual dimension function. Then (K'Cp,b) is

a d-system and hence the results 2.1 - 2.4 apl to the numbers

fo,... fd, where fs is the number of s-cells of K for 0 < s < n,
n

and f d= 7 (- l)Sfs.

Proof. Conditions (i) and (iii) (in the definition of a d-system)

are obviously satisfied, and condition (ii) follows from the face that

when a cell-complex is formed in the natural way from a convex polytope,

its Euler characteristic must be equal to 1. fl

Now we recall (from the Introduction) the notion of an Eulerian

n-manifold. This is a finite simplicial n-complex Mn such that for

each s-simplex o sMn, the Euler characteristic of the linked complex

L(ds,Mn) is equal to 1 - (- 1 )n-s. Here, as usual, L(os,Mn) is the

set of all simplexes o of Mn such that odd = d and the join of

d and d is a simplex of Mn.
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3.2 THEOREM Let En denote the class of all Eulerian n-manifolds.

For MEn and 0 < s < n, let fs(M) denote the number of s-simplices
n

of M and let X(M) denote the Euler characteristic z (- 1)Sfs(M).
s=0

If n = 2u - 1 and MeEn, then X(M) = 0 and the 2u-vector

(fo(M),...,fn(M)) is a linear combination of the u row-vectors of

the u x (2u) matrix J n
S~n

1 2 1

1 3 3 1

(U)'(U)'(( u vuv)
0 1 2U-2 U-1 u

(where zeros have been omitted). Further,

U -1
f = -(_ 1)u-l-j j + 1 (n-j-1 )fn j=O u u-1 )j

If n = 2u - 2 and MeEn, then the 2u-vector (i x(M),fo(),...fnM))

is a linear combination of the u row-vectors of the u x (2u) matrix

n

1 2
1 3 2

1 4 5 2

1 1u- u u- 111 u-i u3 1(0)'1+ 0 )'2+ 1 '"''u-2)+(u-3 'u-1)+u-2)'u)+U-l

(where zeros have been omitted). Further,
u -2

f 1~)u+.( n u-2 l)U-J 2 (nuj l)fj-
fn (- u-i; + 7 (- ' - .
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Proof. For d,teM let 1(dv).= 1 when d C T or d D T,

and c(dt).= 0 otherwise. For each cisM let b(d) = n - dim d where

dim is the usual dimension function. With d = n + 1, we claim that

(M -{},cp,b) is a d-system. Since rain{dim d:'d6M -{[31J= 0, condi-

tion (i) is evident. To verify condition (ii) we note that if dSM,

then relative to the system (M - [3,cp,b) the characteristic x(d) of

o (in the sense of §2) is the alternating sum z (- l)[ii(o), where
i=0

1i(d) is the number of simplices TEM for which o C -c and b(v) = i.

Since 6(T) = n - dim T, each simplex T D o contributes (_ 1 )n-dimT

to the formation of X(d). The choice T = o contributes nothing to the

formation of XL(d,M), but each TeM which properly contains d corres-

ponds to a simplex of dimension dim T - dim d - 1 whose join with d

is equal to T, and thus with s.= dim d each such simplex T contri-

butes (- 1 )dimT-s-1 to the formation of XL(d,M). Since

( )n-dimT= (_ ()n-s-( 1)idim -s-1

we have

X(,5) = (- l)n-s-lXL(d,M) + (_ i)n-s.

But M is an Eulerian n-manifold, so XL(dM) 1 - (- )s and

X(di) ( )n-s-l[l - ( 1 )n-s] + (_ 1 )n-s =.

This establishes condition (ii). Condition (iii) follows at once from

the relevant definitions in conjunction with the fact that M is a

simplicial complex. Thus (M,cp,b) is a d-system with d n + 1.

It is then a routine matter to derive the assertions of 3.2 from 2.1

and 2.4. II
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Of course the results 2.2 and 2.3 can also be dualized so as to

apply to Eulerian manifolds, but this is immediate and will be left to

the reader. We shall describe explicitly the application to convex poly-

topes, for this will be required in [5].

An n-dimensional convex polytope P will be called simplicial

provided all of its (n - 1)-faces are simplices, and it will be called

simple provided each of its vertices is on exactly n edges (or, equiva-

lently, on exactly n (n - 1)-faces). From the standard polarity theory

(Weyl [61) it follows that if P is an n-dimensional convex polytope

in Rn and Os int P, then P is simplicial if and only if the polar

body P is simple, where
O.= n

ps Fe P xiyi

3.3 PROPOSITION Suppose P is a convex polytope of dimension

n + 1 and M is the cell-complex consisting of all faces of P which

are of dimension < n. If P is simple, M is a simple n-manifold

and is subject to 3.1. If P is simplicial, M is an Eulerian

n-manifold and is subject to 3.2.

Proof. First verify that M is a cell-complex; then clearly

M is simplicial if and only if P is simplicial. It follows by polarity

that M is a simple n-manifold when P simple and then by a second

use of polarity that M is actually an Eulerian n-manifold when P

is simplicial.
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Now let f( n). [f(M):ME~n} C R nl, where

f(M).= (fo(M),...,fn(M) C 0+l.

Theorem 3.2 implies that both when n = 2u - 1 and when n = 2u - 2,

the set f(e) lies in a u-dimensional linear subspace of Rn. Our

final result shows that in fact the linear span of f(En) is u-dimen-

sional, even when attention is restricted to those Eulerian n-manifolds

which arise from (n + 1)-dimensional convex polytopes.

3.4 PROPOSITION For 0 < r < n + 1, let Cn denote the
__ _ r •r

Eulerian n-manifold which is the join of the boundary B of an

r-simplex and the boundary B+l of an (n + 1 - r)-2.iplex.

When n 2u- 1 the matrix

f(C'n)

I1
f(cn)

is of rank u, and when n = 2u -2 the matrix

f( C )

f(C'j)

f(C 
)

U-1

is of rank u.
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nProof. Each s-simplex of Cr is the join of a (X - 1)-
r

simplex (determined by X vertices) of B rand a (b-l)-simplex

(determined by [ vertices) of Bn+lr, where %E[O,r],ýLs[0,n + r - .],

and X + ýi s + 1; conversely, each such join is an s-face of Cn
r

Hence with fn f we havers s r
fn = r+1 n+2-r•

rs s[O,r] ,lie[O,n+l-r] ,+[=s+l ( " r)

Considering the expansion of the polynomial (+ + x)xr+l +x+2-r

=(il+ x)n+3, we see that

r+l n+2-r) (n+3IL s+l

It follows that fn = (n+3 wrs 's+l" whenever min(r,n + 1- r) >s (and, in
particular, when n + 1 > 2r > 2s), while fnss = (n+3) 1 when

Sss s+l

n + 1 > 2s.

Now suppose n = 2u - 1 and consider the u x u matrix

(fn (l<r<u, o0 s <u-l).
r5

Each element of its 0-column is equal to n + 3, its 1-column starts
(n+3) n+3

with (2n) - 1 and has (2n) thereafter;...;' its s-column has

fns = (n+3) - lbut (n+3) thereafter. Subtracting the last row from
ss s+l s+(

each of the others, we obtain a matrix (gn ) in which the O-column
rs

ends with n + 3 but has all its other entries equal to 0, while the

matrix

(grs) lis~u-l)
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is triangular, with all O's below its main diagonal and all - l's

along the main diagonal. Hence the determinant of (gnl ) is equal
rs

to n + 3 and we have the desired conclusion for the case n = 2u - 1.

Suppose, finally, that n = 2u - 2 and note that since, for each r,

n
n (- 1)Sfs(Cn) n X(C) = 2,

s=O

the rank of the matrix with which we are concerned is not changed by

adding a column of l's. The augmented matrix has the u x u submatrix

1 fn nn
00 01 0(u-2)
n n n

1 f1  f n10 11 l(u-2)

n n fn
(u-_1)0 (u-1)l (u-1)(u-2)

whose determinant is equal to 1 (as is verified by the method employed

above). This completes the proof of 3.4.
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